Lecture 7: Borel-Cantelli lemmas and almost sure convergence

 ${\bf STAT205}\ Lecturer:\ Jim\ Pitman\ Scribe:\ Daisy\ Yan\ Huang\ \verb|\scribe| stat.berkeley.edu>| and the statement of the st$

This set of notes is a revision of the work of Jin Kim, 2002.

7.1 Borel-Cantelli Lemmas

Recall that for real valued random variables X_n and X,

$$\{X_n \to X\} = \{\omega : X_n(\omega) \to X(\omega)\}$$

= $\{\forall \epsilon > 0, |X_n - X| \le \epsilon \text{ eventually}\}$

Thus,

$$\mathbb{P}(X_n \to X) = 1 \quad \Leftrightarrow \forall \epsilon > 0, \ \mathbb{P}(|X_n - X| \le \epsilon \ ev.) = 1$$
$$\Leftrightarrow \forall \epsilon > 0, \ \mathbb{P}(|X_n - X| > \epsilon \ i.o.) = 0$$

Let the event $A_n := \{|X_n - X| > \epsilon\}$. Then, we are motivated by consideration of a.s. convergence to find useful conditions for $\mathbb{P}(A_n \text{ i.o.}) = 0$.

Recall that $\{A_n \text{ i.o.}\} = \bigcap_n \bigcup_{m > n} A_m$.

Theorem 7.1 (Borel-Cantelli Lemmas) Let (Ω, F, \mathbb{P}) be a probability space and let (A_n) be a sequence of events in F. Then,

1. If
$$\sum_{n} \mathbb{P}(A_n) < \infty$$
, then $\mathbb{P}(A_n \ i.o.) = 0$.

2. If
$$\sum_{n} \mathbb{P}(A_n) = \infty$$
 and A_n are independent, then $\mathbb{P}(A_n \ i.o.) = 1$.

There are many possible substitutes for independence in BCL II, see Kochen-Stone Lemma.

Before proving BCL, notice that

•
$$\mathbf{1}(A_n \text{ i.o.}) = \limsup_{n \to \infty} \mathbf{1}(A_n)$$

•
$$\mathbf{1}(A_n \text{ ev.}) = \lim \inf_{n \to \infty} \mathbf{1}(A_n)$$

•
$$\{A_n \text{ i.o.}\} = \lim_{m \to \infty} (\bigcup_{n > m} A_n)$$
 (note: as $m \uparrow$, $\bigcup_{n > m} A_n \downarrow$)

•
$$\{A_n \text{ ev.}\} = \lim_{m \to \infty} (\cap_{n > m} A_n)$$
 (note: as $m \uparrow$, $\cap_{n \ge m} A_n \uparrow$).

Therefore,

$$\mathbb{P}(A_n \text{ ev.}) \leq \liminf_{n \to \infty} \mathbb{P}(A_n)$$
 by Fatou's lemma
 $\leq \limsup_{n \to \infty} \mathbb{P}(A_n)$ obvious from definition
 $\leq \mathbb{P}(A_n \text{ i.o.})$ dual of Fatou's lemma (i.e. apply to $-\mathbb{P}$)

Proof: (Of BCL I)

$$\mathbb{P}(A_n \text{ i.o.}) = \lim_{m \to \infty} \mathbb{P}(\cup_{n \ge m} A_n)$$

$$\leq \lim_{m \to \infty} \sum_{n \ge m}^{\infty} \mathbb{P}(A_n) = 0 \text{ since } \sum_{i=1}^{\infty} \mathbb{P}(A_n) < \infty.$$

Proof: (Of BCL II) Assume that $\Sigma \mathbb{P}(A_n) = \infty$ and the A_n 's are independent. We will show that $\mathbb{P}(A_n^c \text{ ev.}) = 0$.

$$\mathbb{P}(A_n^c \text{ ev.}) = \lim_{n \to \infty} \mathbb{P}(\cap_{m \ge n} A_m^c) = \lim_{n \to \infty} \prod_{m \ge n} \mathbb{P}(A_m^c)$$

$$= \lim_{n \to \infty} \prod_{m \ge n} (1 - \mathbb{P}(A_m)) \le \lim_{n \to \infty} \prod_{m \ge n} \exp(-\mathbb{P}(A_m^c))$$

$$= \lim_{n \to \infty} \exp\left(-\sum_{m \ge n} \mathbb{P}(A_m^c)\right) = 0$$
(7.1)

since
$$(-\sum_{m\geq n} \mathbb{P}(A_m^c)) \to \infty$$
, as $n \to \infty$

For (7.1), we used the following fact (due to the independence of A_n):

$$\mathbb{P}(\cap_{m \geq n} A_m^c) = \lim_{N \to \infty} \mathbb{P}(\cap_{m \leq m \leq N} A_m^c) = \lim_{N \to \infty} \prod_{m < m < N} \mathbb{P}(A_m^c) = \prod_{m < m} \mathbb{P}(A_m^c).$$

For
$$(7.2)$$
, $1 - x \le \exp(-x)$ was used.

For an example in which the theorem cannot be applied, consider $A_n = (0, 1/n)$ in (0, 1). Then, $\mathbb{P}(A_n) = 1/n$, $\sum \mathbb{P}(A_n) = \infty$, but $\mathbb{P}(A_n \text{ i.o.}) = \mathbb{P}(\emptyset) = 0$.

Example 7.2 Consider random walk in \mathbb{Z}^d , $d = 0, 1, \dots S_n = X_1 + \dots + X_n$, $n = 0, 1, \dots$ where X_i are independent in \mathbb{Z}^d . In the simplest case, each X_i has uniform distribution on 2^d possible strings. i.e., if d = 3, we have $2^3 = 8$ neighbors

$$\left\{ \begin{array}{c} (+1,+1,+1) \\ \vdots \\ (-1,-1,-1) \end{array} \right\} .$$

Note that each coordinate of S_n does a simple coin-tossing walk independently. We can prove that

$$\mathbb{P}(S_n = 0 \ i.o.) = \begin{cases} 1 & if \ d = 1 \ or \ 2 \ (recurrent) \\ 0 & if \ d \ge 3 \ (transient) \end{cases}$$
 (7.3)

Proof Sketch: (of (7.3))

Let us start with d = 1, then

$$\mathbb{P}(S_{2n} = 0) = \mathbb{P}(n \text{ "+" signs and } n \text{ "-" signs})$$
(7.4)

$$= \binom{2n}{n} 2^{-2n} \tag{7.5}$$

$$\sim \frac{c}{\sqrt{n}} \text{ as } n \longrightarrow \infty.$$
 (7.6)

where we used the facts that $n! \sim {n \choose e}^n \sqrt{2\pi n}$, and that $a_n \sim b_n$ iff $\frac{a_n}{b_n} \to 1$ as $n \to \infty$. Note

$$\sum \left(\frac{1}{\sqrt{n}}\right)^d \begin{cases} = \infty & d = 1, 2\\ < \infty & d = 3, 4, \dots \end{cases}$$

$$(7.7)$$

Thus, $\sum_{n} \mathbb{P}(S_{2n} = 0) = \infty$, and BC II and (7.7) together gives (7.3).

Example 7.3 (for the case d = 1) $\{S_2 = 0\}$ is the event of ending up back to the origin at step 2 when we started at the origin. $\mathbb{P}(S_2 = 0) = 1/2$. Note:

$$\mathbb{P}(S_{10,000} = 0) \sim \frac{c}{\sqrt{n}} \approx 1/100,$$

$$\mathbb{P}(S_{10,002} = 0) \approx 1/100,$$

$$\mathbb{P}(S_{10,000} = 0, S_{10,002} = 0) = \mathbb{P}(S_{10,000} = 0)\mathbb{P}(S_{10,002} = 0 | S_{10,000} = 0) \approx 1/100 \cdot 1/2,$$

Later in the course, we will show that for the case d = 1, even when the $(S_{2n} = 0)$ are dependent, it is still true that $\mathbb{P}(S_{2n} = 0 \text{ i.o. }) = 1$.

The same result holds for the case d=2.

In general,

$$\mathbb{P}(S_{2n} = 0) = \frac{\binom{2n}{n}}{2^{2n}}^d \approx \frac{c^d}{n^{d/2}}.$$

For d=2, this is $\sim \frac{c^2}{n}$ which is not summable. Thus, $\mathbb{P}(S_{2n}=0 \text{ i.o.})=1$. For $d\geq 3$, this is $\sim \frac{c^3}{n^{3/2}}$ which is summable. Then, by **BCL I**, $\mathbb{P}(S_{2n}=0 \text{ i.o.})=0$.

7.2 Almost sure convergence

Because

$$X_n \longrightarrow X$$
 a.s. \iff $X_n - X \longrightarrow 0$ a.s.,

it is enough to prove for the case of convergence to 0.

Proposition 7.4 The following are equivalent:

- 1. $X_n \xrightarrow{a.s.} 0$
- 2. $\forall \epsilon > 0$, $\mathbb{P}(|X_n| > \epsilon \ i.o.) = 0$
- 3. $M_n \stackrel{\mathbb{P}}{\longrightarrow} 0$ where $M_n := \sup_{n \le k} |X_k|$
- 4. $\forall \epsilon_n \downarrow 0 : \mathbb{P}(|X_n| > \epsilon_n \ i.o.) = 0$

Note: " \forall " in Proposition 4 cannot be replaced by " \exists ". For example, Let $X_n = (1/\sqrt{n})U_n$, where $U_1, U_2, ...$ are independent U[0, 1].

Take $\epsilon_n = 1/2/\sqrt{n}$. Then, $\mathbb{P}(X_n > \epsilon_n) = \mathbb{P}(U_n > 1/2) = 1/2$. So, $\mathbb{P}(X_n > \epsilon_n \text{ i.o.}) = 1$.

But if we take $\epsilon_n = \frac{1}{\sqrt{n}}$. Then, $\mathbb{P}(X_n > \epsilon_n) = \mathbb{P}(U_n > 1) = 0$.

Proof: (only for the equivalence of 1 and 3)

Suppose Proposition 1 holds. If $X_n(\omega) \to 0$ a.s., then $\sup_{n \le k} |X_k(\omega)| \to 0$ a.s. But this implies that $M_n \to 0$ a.s. Thus, $M_n \stackrel{\mathbb{P}}{\longrightarrow} 0$.

Conversely, if $M_n \downarrow$ as $n \uparrow$, then we know in advance that M_n has a almost-surely-limit in $[0, \infty]$.

Lemma 7.5 If $X_n \stackrel{\mathbb{P}}{\longrightarrow} X$, then there exists a subsequence n_k such that $X_{n_k} \to X$ a.s.

Proof: It is enough to show that there exists $\epsilon_k \downarrow 0$ such that $\sum_k \mathbb{P}(|X_{n_k} - X| > \epsilon_k) < \infty$. We can take $\epsilon_k = 1/k$ and choose n_k so that $\mathbb{P}(|X_{n_k} - X| > 1/k) \leq 1/2^k$. Then, $\sum_k \mathbb{P}(|X_{n_k} - X| > \epsilon_k) < \infty$, and by **BCL I** we can conclude that $X_{n_k} \to X$ a.s.