
Lecture 7 : Borel-Cantelli lemmas and almost sure convergence

STAT205 Lecturer: Jim Pitman Scribe: Daisy Yan Huang <yanhuang@stat.berkeley.edu>

This set of notes is a revision of the work of Jin Kim, 2002.

7.1 Borel-Cantelli Lemmas

Recall that for real valued random variables Xn and X,

{Xn → X} = {ω : Xn(ω) → X(ω)}
= {∀ε > 0, |Xn − X| ≤ ε eventually}

Thus,

P(Xn → X) = 1 ⇔ ∀ε > 0, P(|Xn − X| ≤ ε ev.) = 1
⇔ ∀ε > 0, P(|Xn − X| > ε i.o.) = 0

Let the event An := {|Xn −X| > ε}. Then, we are motivated by consideration of a.s.
convergence to find useful conditions for P(An i.o.) = 0.

Recall that {An i.o.} =
⋂

n

⋃

m≥n Am.

Theorem 7.1 (Borel-Cantelli Lemmas) Let (Ω, F, P) be a probability space and
let (An) be a sequence of events in F. Then,

1. If
∑

n P(An) < ∞, then P(An i.o.) = 0.

2. If
∑

n P(An) = ∞ and An are independent, then P(An i.o.) = 1.

There are many possible substitutes for independence in BCL II, see Kochen-Stone
Lemma.

Before proving BCL, notice that

• 1(An i.o.) = lim supn→∞ 1(An)
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• 1(An ev.) = lim infn→∞ 1(An)

• {An i.o.} = limm→∞(∪n>mAn) (note: as m ↑, ∪n≥mAn ↓ )

• {An ev.} = limm→∞(∩n>mAn) (note: as m ↑, ∩n≥mAn ↑ ).

Therefore,

P(An ev.) ≤ lim inf
n→∞

P(An) by Fatou’s lemma

≤ lim sup
n→∞

P(An) obvious from definition

≤ P(An i.o.) dual of Fatou’s lemma (i.e. apply to −P)

Proof: (Of BCL I)

P(An i.o.) = lim
m→∞

P(∪n≥mAn)

≤ lim
m→∞

∞
∑

n≥m

P(An) = 0 since
∞
∑

i=1

P(An) < ∞.

Proof: (Of BCL II) Assume that ΣP(An) = ∞ and the An’s are independent. We
will show that P(Ac

n ev.) = 0.

P(Ac
n ev.) = lim

n→∞
P(∩m≥nAc

m) = lim
n→∞

∏

m≥n

P(Ac
m) (7.1)

= lim
n→∞

∏

m≥n

(1 − P(Am)) ≤ lim
n→∞

∏

m≥n

exp (−P(Ac
m)) (7.2)

= lim
n→∞

exp

(

−
∑

m≥n

P(Ac
m)

)

= 0

since (−∑m≥n P(Ac
m)) → ∞, as n → ∞

For (7.1), we used the following fact (due to the independence of An):

P(∩m≥nAc
m) = lim

N→∞
P(∩n≤m≤NAc

m) = lim
N→∞

∏

n≤m≤N

P(Ac
m) =

∏

n≤m

P(Ac
m).

For (7.2), 1 − x ≤ exp(−x) was used.

For an example in which the theorem cannot be applied, consider An = (0, 1/n) in
(0, 1). Then, P(An) = 1/n,

∑

P(An) = ∞, but P(An i.o.) = P(∅) = 0.
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Example 7.2 Consider random walk in Z
d, d = 0, 1, · · · Sn = X1 + · · · + Xn, , n =

0, 1, · · · where Xi are independent in Z
d. In the simplest case, each Xi has uniform

distribution on 2d possible strings. i.e., if d = 3, we have 23 = 8 neighbors










(+1, +1, +1)
...

(−1,−1,−1)











.

Note that each coordinate of Sn does a simple coin-tossing walk independently. We
can prove that

P(Sn = 0 i.o.) =

{

1 if d = 1 or 2 (recurrent)
0 if d ≥ 3 (transient) .

(7.3)

Proof Sketch: (of (7.3))
Let us start with d = 1, then

P(S2n = 0) = P(n “+” signs and n “−” signs) (7.4)

=

(

2n

n

)

2−2n (7.5)

∼ c√
n

as n −→ ∞. (7.6)

where we used the facts that n! ∼
(

n
e

)n √
2πn, and that an ∼ bn iff an

bn
→ 1 as n → ∞.

Note

∑

(

1√
n

)d{
= ∞ d = 1, 2
< ∞ d = 3, 4, · · · (7.7)

Thus,
∑

n P(S2n = 0) = ∞, and BC II and (7.7) together gives (7.3).

Example 7.3 (for the case d = 1) {S2 = 0} is the event of ending up back to the
origin at step 2 when we started at the origin. P(S2 = 0) = 1/2. Note:

P(S10,000 = 0) ∼
c√
n

≈ 1/100,

P(S10,002 = 0) ≈ 1/100,

P(S10,000 = 0, S10,002 = 0) = P(S10,000 = 0)P(S10,002 = 0|S10,000 = 0) ≈ 1/100 · 1/2,

Later in the course, we will show that for the case d = 1, even when the (S2n = 0)
are dependent, it is still true that P(S2n = 0 i.o. ) = 1.
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The same result holds for the case d = 2.

In general,

P(S2n = 0) =

(

2n
n

)

22n

d

≈ cd

nd/2
.

For d = 2, this is ∼ c2

n
which is not summable. Thus, P(S2n = 0 i.o.) = 1. For d ≥ 3,

this is ∼ c3

n3/2
which is summable. Then, by BCL I, P(S2n = 0 i.o.) = 0.

7.2 Almost sure convergence

Because
Xn −→ X a.s. ⇐⇒ Xn − X −→ 0 a.s. ,

it is enough to prove for the case of convergence to 0.

Proposition 7.4 The following are equivalent:

1. Xn
a.s.−→ 0

2. ∀ε > 0, P(|Xn| > ε i.o.) = 0

3. Mn
P−→ 0 where Mn := supn≤k |Xk|

4. ∀ εn ↓ 0 : P(|Xn| > εn i.o.) = 0

Note: “∀” in Proposition 4 cannot be replaced by “∃”. For example, Let Xn =
(1/

√
n)Un, where U1, U2, ... are independent U [0, 1].

Take εn = 1/2/
√

n. Then, P(Xn > εn) = P(Un > 1/2) = 1/2. So, P(Xn > εn i.o.) =
1.

But if we take εn = 1√
n
. Then, P(Xn > εn) = P(Un > 1) = 0.

Proof: (only for the equivalence of 1 and 3)

Suppose Proposition 1 holds. If Xn(ω) → 0 a.s., then supn≤k |Xk(ω)| → 0 a.s. But

this implies that Mn → 0 a.s. Thus, Mn
P−→ 0.

Conversely, if Mn ↓ as n ↑, then we know in advance that Mn has a almost-surely-
limit in [0,∞].

Lemma 7.5 If Xn
P−→ X, then there exists a subsequence nk such that Xnk

→ X
a.s.
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Proof: It is enough to show that there exists εk ↓ 0 such that
∑

k P(|Xnk
− X| > εk) <

∞. We can take εk = 1/k and choose nk so that P(|Xnk
− X| > 1/k) ≤ 1/2k. Then,

∑

k P(|Xnk
− X| > εk) < ∞, and by BCL I we can conclude that Xnk

→ X a.s.


